
PTXdist - A Proposal

Dipl.-Ing. Robert Schwebel

Pengutronix, Braunschweiger Straße 79, 31134 Hildesheim, Germany

r.schwebel@pengutronix.de

Abstract
This paper describes a reliable build system that can be used to construct userland

for embedded Linux applications. Building a customized Linux is as easy as configuring a
kernel. A single configuration file defines precisely how the system was built and makes it
reproducable, even after years.

1. Embedded Linux in Automation

2. Situation

Linux is currently establishing more and more as a reliable operating system for the automation
industry. Being a Unix variant Linux has natively most of the features being required in a modern
32 bit operating system: high availablility, good connectivity and a huge bunch of tools for nearly
every application in a networked environment are a solid base for productive use. Linux is highly
scalable and runs on five dollar processors as well as on multiprocessing systems.

Today all incredients are available to use Linux as an operating system to be used on industrial
PCs for the automation industry. There exist several solutions for Hard Realtime extensions, field-
bus connectivity and fail safe clustering for FIVE9 reliability. Due to it’s portability Linux runs on
all modern processor plattforms, such as x86, PowerPC, ARM, MIPS, SuperH and m68k.

3. Development Environments

Contrary to other operating systems there is a standard compiler suite on Linux which can hand-
le all kinds of compilation problems: The GNU Compiler Suite GCC has a very modular fron-
tend/backend concept, so it is possible to use one compiler environment for all kinds of languages
(C, C++, Java, Fortran, ADA, ...) and processors. The GCC suite is included in every Linux distri-
bution, so normally a developer has everything he needs to do native and cross development using
the same environment. The GCC suite is covered by the GPL License, which ensures that the cu-
stomer has control over the complete sourcecode. Besides the compiler itself there is a broad range
of development tools like editors, debuggers and graphical development environments which cover
all ways people are used to program.

1



2 PTXdist - A Proposal

4. Building Embedded Systems - Today

Having all the development tools the user needs mostly two components to build up a complete
Linux environment for an embedded system:

• The Linux Kernel itself

• A file tree containing the basic libraries and tools (rootfs)

The compilation of a kernel is easy these days: normally one takes just the standard kernel
(found on http://www.kernel.org), configures it to the need of the target system (this results in one
ASCII configuration file which defines exactly what features the kernel has) and start a kernel build.

Things are more difficult with the root filesystem: there is no standard way to assemble the
root tree. Till now people follow three roads when it comes to the root filesystem:

1. Downscale a mainstream distribution (like SuSE, RedHat, Debian)

2. Take a one-disk distribution (AtomicRTAI, MiniRTL, LEM)

3. Compile from scratch

The first two variants have two significant disadvantages when it comes to industrial use: they
are not optimized for the special system (which can be a problem on small ressource machines)
and – more important – you never know whatexactlyyou have on the machine and how it was
compiled. This indeed isveryimportant for industrial applications: Open Source operating systems
like Linux are a rapidly moving target where bugs are fixed on a daily base and versions come out
quickly. So if you want to support your customers for 10 to 15 years (this is usual in automation)
you definitely need control over the sourcecode.

The third variant is better: if the system is compiled from scratch it is exactly known which
versions of the software have been used, which patches have been added and how the packages were
configured. The downside is that building a system from scratch can be a lot of work, vulnerable to
errors and it is not easy to track which steps have been done in which order.

So what is needed for industrial use of Linux is a combination of a distribution and a compi-
lation from scratch.

5. A Comprehensive Build System for Industrial Linux

There is a better solution to create a root filesystem for industrial embedded systems than using
the three methods mentioned above. The idea is to make building a complex root tree as easy as
configuring and compiling a Linux kernel.

The system we propose here consists of two parts: a configuration system and a bunch of
Makefiles which actually do the work. The configuration system should be well known to anybody
who has compiled his own kernel: it is themake menuconfig system from the Linux kernel. Like
with the kernel the user can easily configure the system by making crosses in a menu structure to
enable and disable certain features. The result of the configuration system is also one single ASCII
configuration file which describes exactly which components are part of the target system and how
they should be configured.

The configuration system itself is pretty small, it fits on one disk. All the software components
necessary to construct the final root filesystem are collected from one of two sources: from the



PTXdist - A Proposal 3

Internet by fetching them from the original websites of the projects or from a local directory. If the
configuration was finished and the user does amake get it is tested if all sources needed for the
build are available, otherwhise they are fetched. After this stage was run it is possible to burn the
complete tree to a CD, so the source of the resulting system is completely fixed.

Note that only originally released sources are taken for the target system. This makes it easy to
track bugs, because packet maintainers don’t like it if you report bugs for versions which have not
been released by them. However, in some cases there may be features that are only available with
certain patches to the original sources. In this case the patches are put into a separate directory in
the installation tree. The patches have well defined version numbers, address only one problem at
a time and are tightly integrated into the configuration system. So for example to patch an official
Linux kernel 2.4.18 with therthal5g patch for RTAI you simply have to check one cross in the
configuration dialog.

The second stage of the Makefiles patches and configures all packages according to what the
user has selected in the configuration system. This includes options for packages (such as: should
a library be compiled statically or dynamically, which features shall be switched on or off etc).

Finally, make compile compiles all packages andmake install installs the result into a
predefined root directory. All stages can be run by enteringmake World.

6. Document Revision History

2002/08/06, Robert Schwebel: Initial Revision


	Embedded Linux in Automation
	Situation
	Development Environments
	Building Embedded Systems - Today
	A Comprehensive Build System for Industrial Linux
	Document Revision History

